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1. Introduction 
Estimating software effort is an essential and crucial activity for the software development life cycle 

as it requires estimating the effort and cost at the initial stage of the project. An accurate effort estimation 

leads to the effective and efficient development of software and decreased risks [1][2]. Estimations aim 

to accurately and control the cost and time boundaries of the project planning [3][4]. The key parameters 

of effort estimation are time and cost, which are based on two reasons: to present software that is 

adaptable in a limited time frame and fill the gap between software and hardware progressions; and to 

generate software under the budget and time as responding to changeable customer demands [5][6]. An 

overflow of time and cost usually occurs in software project development activities, which often forces 

to cut the development costs at the cost of software quality. This overflow can impose budget deficit, 

lack of human force, delayed planning, low-quality software, and eventually project failure [1][7]. 

Project estimation is an essential part of completing a project. Projects are planned in terms of cost, 

effort, and budget at the beginning phase of development [8]. Precise effort estimation of software 

ARTICLE  I NFO 

 
ABSTRACT  

 

 
Article history 
Received October 30, 2020 
Revised December 27, 2020 
Accepted April 24, 2021 
Available online April 24, 2021 

 Software effort and cost estimation are crucial parts of software project 

development. It determines the budget, time, and resources needed to 

develop a software project. The success of a software project development 

depends mainly on the accuracy of software effort and cost estimation. A 

poor estimation will impact the result, which worsens the project 

management. Various software effort estimation model has been introduced 

to resolve this problem. COnstructive COst MOdel (COCOMO) is a well-

established software project estimation model; however, it lacks accuracy in 

effort and cost estimation, especially for current projects. Inaccuracy and 

complexity in the estimated effort have made it difficult to efficiently and 

effectively develop software, affecting the schedule, cost, and uncertain 

estimation directly. In this paper, Particle Swarm Optimization (PSO) is 

proposed as a metaheuristics optimization method to hybrid with three 

traditional state-of-art techniques such as Support Vector Machine (SVM), 

Linear Regression (LR), and Random Forest (RF) for optimizing the 

parameters of COCOMO models. The proposed approach is applied to the 

NASA software project dataset downloaded from the promise repository. 

The proposed approach has been compared with the three traditional 

algorithms; however, the obtained results confirm low accuracy before 

hybridizing with PSO. Overall, the results showed that PSOSVM on the 

NASA software project dataset could improve effort estimation accuracy 

and outperform other models.  
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development plays a main task to predict how much workforce should be prepared during the works of 

a software project to be completed on time and with the planned budget without ignoring the quality 

of a software [9]. Accuracy of development cost estimation is a key factor in the success of a construction 

project and influenced the decision-making by the stakeholders of a software project [10] and to bid a 

contract with them [11]. The capacity of a budget estimating model is determined by calculating its bias, 

stability, and precision. Measures of bias, stability, and precision are concerned with the average 

difference between actual and the estimated costs, considering both the degree of variation around the 

average and the combination with bias and consistency [12]. By far, the most popular evaluation criteria 

used involve statistics such as mean, standard deviation, and coefficient of variation [10].  

Identifying and calculating software metrics are important for various reasons, including estimating 

programming execution, measuring the effectiveness of software processes, estimating required efforts 

for processes, reducing defects during software development, and monitoring and controlling software 

project executions [13]. An example of the wrong cost estimation that happened recently was in 

estimating the budget of the international arrivals facility built at Seattle-Tacoma International Airport 

in Seattle, Washington, USA. Initially, in 2013 the budget was estimated at US$ 300 million, but then 

the budget increased up to US$ 968 million in September 2018 [14]. Research shows that usually, 

projects seem to be unclear at the beginning and become less vague as they progress [15]. 

One of the software metrics used to estimate the cost and effort is called the lines of code (LOC) 

metric and is considered a basic software metric [16] as it is used in most software project estimation 

techniques. It is hard to quickly and accurately predict the development budget at the planning stage 

because the documentation is generally incomplete. For this reason, various procedures have been created 

to accurately predict construction costs with the limited project data available in the early phase [3]. 

Three known models are used to estimate the project effort, cost, and resources: Constructive Cost 

Model (COCOMO), Analogy-based Model, and Use Case Points model.  

Banimustafa [11] has used three machine learning techniques; Naïve Bayes, Logistic Regression, and 

Random Forest on the COCOMO dataset. The software project estimation methods used are 

COCOMO, function point analysis, and use case point.  All the machine learning techniques used 

successfully predicted most of the project effort even better than COCOMO. The researcher highlighted 

that in future work to improve the drivers of COCOMO. Rekha [17] studied the comparative analysis 

between traditional techniques and Machine Learning (ML) techniques that successfully found the 

suitable technique for a kind of project. The finding highlights that many other researchers develop 

different estimation methods, but there is no best method because each technique can suit particular 

projects. Bhatia and Attri [18] compared two Machine Learning algorithms, Linear Regression and 

Multi-Layer perceptron, to predict the effort estimation of a software project using the COCOMO 

dataset. The comparison was made based on the evaluation criteria: Correlation Coefficient, Mean 

Absolute error, Root Mean Square Error, Relative absolute Error, and Root Relative Squared Error. 

The research proved that the Multi-Layer perceptron model could predict the effort of a software project 

at the beginning stage more accurately than the linear regression model. 

This paper presents the use of Particle Swarm Optimization (PSO) as an optimization algorithm to 

optimize the parameters of the COCOMO model to estimate a more practical and accurate effort. The 

remainder of the paper is organized as follows: Section 2 describes the methodological steps of work 

used in this experimentation and presents the evaluation criteria and the dataset used. Section 3 discusses 

the experiment and results findings from the comparison. Finally, Section 4 concludes the testing and 

experimentation with the findings. 

2. Method 
This research paper aims to develop an optimized software project cost and effort estimation of the 

COCOMO model with Particle Swarm Optimization (PSO).  The research starts with a literature review 

study to gain insight into previous researchers' detailed problem statement and approaches (Fig. 1). A 
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NASA dataset is collected to demonstrate the performance of optimized Support Vector Machine and 

Random Forests. The dataset can be assessed publicly from 

http://promise.site.uottawa.ca/serepository/datasets-page.html. Sources of the datasets are from 

COCOMO NASA 1 that contains 17 attributes and 60 number of projects. 

 
Fig. 1.  Research Methodology 

The application will require the user to insert five inputs about a project, which are the number of 

Lines of Code (LOC), Database Size (DATA), Required Software Reliability (RELY), Execution Time 

Constraint (TIME), and Main Storage Constraint (STOR). The application's output will estimate the 

effort needed for that particular project in a person-month unit. The data is pre-processed in order to 

calculate the effort estimation. In this experiment, the data is imported into r studio. The mice package 

is used to check the missing values, and the datasets contain no missing values. The value of the drivers 

is in numerical weight converted to numerical values due to avoid bias while constructing the machine 

learning model. The mode constant is assigned based on the COCOMO predefined values. Three 

traditional regression machine learning algorithms are used for this experiment: Linear Regression, 

Support Vector Machine, and Random Forest.  

The linear regression model summarizes a relationship between two variables, independent and 

dependent variables. In this experiment, the practical use of linear regression is to find the approximate 

prediction as a predictive model. The relationship of the prediction and the actuals data is then observed 

from the best fit line. The best fit line is where the total error prediction is as small as possible. Support 

Vector Machine (SVM) model is a linear model for classification and regression problems. A support 

vector machine model can solve linear and non-linear problems. This model aims to create a hyperplane 

and separate the data into classes. The support vector machine model can find the maximum margin 

between the data points and the hyperplane to reduce misclassifications. Also, it can be used to solve 

unbalanced data problems. 

The Random Forest (RF) model is made up of many decision trees that depend on random vector 

values. This model is called random because, during building trees, it uses random sampling for training 

data points, and during splitting nodes, it uses random subsets of features considered. Each tree in a 

random forest learns from a random sample of the data points. The RF is used due to it can produce 

high accurate classifiers. The most powerful parameters to evaluate the performance and measures the 

error differences between values are by employing Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). These 

parameters are negatively oriented, which implies better lower values. These three criteria provide 

significantly a meaningful representation that computes an error between two numeric vectors. Mean 

Squared Error (MSE), the mean squared error or mean squared deviation of an estimator, measures the 

average of the squares of the errors, the average squared difference between the estimated values, and 

what is estimated. The lower the value of MSE, the better accuracy. 

Literature Review 
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𝑀𝑀𝑀𝑀𝑀𝑀 =  1 ∕ 𝑛𝑛 ∑𝑗𝑗=1ⁿ (𝑦𝑦𝑗𝑗  – ŷ𝑗𝑗)    (1) 

Root Means Squared Error (RMSE). It represents the sample standard deviation between predicted 

and observed values (called residuals). 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  √(1 ∕  𝑛𝑛 ∑𝑗𝑗=1ⁿ (𝑦𝑦𝑗𝑗  – ŷ𝑗𝑗)²)  (2) 

Mean Absolute Error (MAE) is the average of the absolute difference between predicted and observed 

values. The MAE is a linear score which means that all the individual differences are weighted equally 

in the average. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1 ∕  𝑛𝑛 ∑𝑗𝑗=1ⁿ |𝑦𝑦𝑗𝑗  – ŷ𝑗𝑗|   (3) 

Mean Absolute Percentage Error (MAPE) measures prediction accuracy as a percentage, also known 

as the average absolute percent error for each predicted minus actual value and then divided by actual 

values. The lower MAPE, the better the accuracy. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1 ∕  𝑛𝑛 ∑𝑗𝑗=1ⁿ | (𝑦𝑦𝑗𝑗  – ŷ𝑗𝑗) / 𝑦𝑦𝑗𝑗  |    (4) 

The accuracy of the cost estimation models is evaluated by the Magnitude of Relative Error (MRE) 

and the Mean Magnitude of Relative Error (MMRE). The optimum value of MRE and MMRE is 

closest to zero. 

𝑀𝑀𝑅𝑅𝑀𝑀 =  | (𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 — 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎) / 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎 |  (5) 

Mean Magnitude of Relative Error (MMRE) measures predicted effort and actual effort value relative 

to the actual effort value. 

𝑀𝑀𝑅𝑅𝑀𝑀 =  ( | (𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 — 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎 ) / 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎 | ) / 𝑁𝑁 (6) 

Min-Max Accuracy is a good metric to see how close they are, considering the average between the 

minimum and the maximum prediction. The higher the value of Min-max accuracy, the better the 

accuracy. Correlation Accuracy is the correlation between predicted and actuals used as an accuracy 

measure. The Pearson product-moment correlation coefficient is used to measure the strength of the 

predicted and actuals value of the experiment. The predicted and actuals value has similar directional 

movements when the correlation accuracy is high. P-Value, also known as the calculated probability, 

determines the significance of the experiment's results. The P-Value is lower than 0.05 shows strong 

proof against the null hypothesis; thus, the null hypothesis is rejected. The smaller the P-Value, the 

stronger the evidence to reject the null hypothesis.  

Null hypothesis of this project is, the population correlation coefficient is not significantly different 

from zero. There is no significant linear correlation between control and experimental values in the 

population. The alternative hypothesis of this project is, the population correlation coefficient is 

significantly different from zero. There is a significant linear relationship between control and 

experimental values in the population. Vargha and Delaney A (VDA) measure is an example of effect 

size differentiation between two observations, control and experimental samples. The range of VDA is 

from 0 to 1. VDA suggested a threshold for interpreting the effect size where 0.5 means no difference 

at all; up to 0.56 indicates a small difference; up to 0.64 indicates medium; and anything over 0.71 is 

large [19]. Wilcoxon Rank Sum Test is a nonparametric test used to compare two related samples on a 

single sample to see if their population ranks differ. The null hypothesis is difference between the two 

samples has equal medians. The alternative hypothesis is that there is no difference between the two 

samples. If the p-value is larger than 0.05, we must accept the null hypothesis because there is enough 

evidence to conclude. The null hypothesis is rejected; there is sufficient evidence to conclude the sample 
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has no identical distributions. The training dataset is 80%, and the testing dataset is 20% for COCOMO 

NASA 1. 

2.1. Software Effort Estimation 
Software project management demands an accurate software effort estimation that provides sufficient 

support to judge the amount of effort and resources efficiently and effectively [20][21]. Software effort 

estimation is the process of predicting the most realistic amount of effort required to develop or maintain 

software based on incomplete, uncertain, and noisy data [22]. Software is the most expensive component 

in many computer-based systems that affects a number of bugs that produce enormous differences 

between gain and loss during effort estimation [23]. 

A project manager often faces many problems with estimating the effort needed when developing a 

project. An estimating effort task is a great challenge for any software company, especially to develop a 

new and high-quality software project within a predetermined budget and time [24]. Although 

estimating an effort can be measured with numerous techniques, some of the techniques used require 

additional data, while the others are time-consuming and difficult to follow [25]. Besides, there are 

several drawbacks in effort estimation despite having made an initial estimation. Previously, most project 

managers estimate their brand-new project blindly based on their experience-based judgment and 

estimation by analogy, which is often unsuitable and incompatible with the project. Therefore, using 

optimization algorithm approaches is highly advantageous to use a more structured estimation process 

[26]–[28]. This paper aims to objectively estimate software effort by using optimization algorithm 

approaches despite using subjective and time-consuming estimation methods like expert judgment and 

estimation by analogy [3][29]. 

2.2. COCOMO Model   
The constructive Cost Model (COCOMO) is the most commonly used model for effort estimation. 

It was proposed by Barry Boehm and is based on the study of 63 projects, making it one of the best-

documented models [30]. Although COCOMO is among the most common, COCOMO seems to 

become less accurate due to increased complexity and over-demanding software requirements [23][31]. 

COCOMO model uses a regression formula based on a number of lines of code (LOC). This model is 

often used to reliably predict the various parameters associated with making a project, such as size, effort, 

cost, time, and quality [21][32].  

Effort and schedule are two parameters and outcomes that define the quality of any software product. 

An effort is the amount of labor required to complete a task, measured in person-month units [12]. 

Schedule simple means the amount of time required to complete the job, which is proportional to the 

effort. It is measured in the units of time such as weeks, months. Therefore, this paper aims to improve 

the accuracy of COCOMO effort estimation by optimizing the coefficients by using Particle Swarm 

Optimization (PSO) for assessing the performance. The optimized COCOMO with PSO is evaluated 

based on error, minimum, maximum, correlation, and statistical significance tests.  

COCOMO (Constructive Cost Model) is a screen-oriented, interactive software package that assists 

in budgetary planning and schedule estimation of a software project [30]. The intermediate COCOMO 

model used 15 drivers to estimate the cost of a project. The drivers are classified into four attributes; 

Product attributes, Hardware attributes, Personnel attributes, and Project attributes [11]. 

2.3. Particle Swarm Optimization (PSO) 
Particle swarm optimization is one of the most popular swarm intelligence algorithms inspired by 

the social behavior of bird flocking or fish schooling. These swarms comply with cooperative food, and 

each member of the swarms continues to change the search pattern on its own and other members 

according to their learning experiences.  

The straightforward behavior followed by individuals in a flock imitates their own successes and the 

success of neighboring individuals. In a PSO algorithm, a population is called the swarm, the candidate 

of solutions in the swarm is called particles, while the food is called an objective function [33]. Particles 

can update their positions and velocities according to environmental change. In addition, the swarm in 
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PSO does not limit its movement but continuously searches for the optimal solution in the possible 

solution space [12][28]. Particles in PSO can keep their stable movement in the search space while 

change their movement mode to adapt to the change in the environment [34]. 

Each particle representing a potential solution is maintained within a swarm. In simple terms, the 

particles are, therefore, 'flown' through a multidimensional search space where the position of each 

particle is adjusted according to itself and its neighbor's experiences [35]. Let 𝑥𝑥𝑥𝑥(𝐸𝐸) denote the position 

of particle 𝑥𝑥 in the search space at time-space t, which denotes discrete time steps unless otherwise stated. 

The position of the particle is changed by adding a velocity vector, 𝑣𝑣𝑥𝑥(𝐸𝐸), to the current position: 

𝑥𝑥𝑒𝑒 (𝐸𝐸 + 1) = 𝑥𝑥𝑒𝑒 (𝐸𝐸) + 𝑣𝑣𝑒𝑒 (𝐸𝐸 + 1)  (7) 

Each particle also has to maintain its Pbest, the personal local best position, and Gbest, the global best 

position among all particles [36]. Following equations are used to update the position and velocity of 

the particle. 

𝑣𝑣𝑒𝑒 (𝐸𝐸 + 1)  =  𝑣𝑣𝑒𝑒 (𝐸𝐸)  + 𝑐𝑐1𝐸𝐸1 (𝑀𝑀𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 — 𝑥𝑥𝑒𝑒 (𝐸𝐸))  + 𝑐𝑐2𝐸𝐸2 (𝐺𝐺𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 — 𝑥𝑥𝑒𝑒 (𝐸𝐸)) (8) 

where r1 and r2 are two random numbers range [0,1) and c1 and c2 are the learning factors. The PSO 

algorithm is shown in Fig. 2. 

Algorithm 2 Particle Swarm Optimization (PSO) 
1.   Initialize the parameter NP, w, c1, and c2, maximum iteration 

2.   Initialize particle velocity and position 

3.   Evaluate the fitness value 

4.          If (the current fitness value < particle best value) 

5.                  Assign the current value for Pbest 
6.             End if  

7.          Set particle with the best fitness value to Gbest 
8.   Iteration = 1  

9.   While stopping criteria is not reached 

10.  Do 

11.       For i = 1 to NP 

12.          Update particle velocity according to the second equation 

13.          Update particle position according to the first equation 

14.      End for 

15.  End while 

16.  Return the best solution 
Fig. 2. The PSO algorithm 

3. Results and Discussion 
In this project, the correlation matrix uses to evaluate the correlation of the two variables. The 

dependent variable is the actual effort attribute, while the 15 cost drivers and the line code are the 

independent variables. From Fig. 3, five attributes positively correlate towards actual effort attributes, 

LOC, DATA, TIME, TOOL, and STOR for COCOMO NASA 1 dataset. In comparison, other 

attributes show negative correlations towards actual effort attributes. 

The project builds predictive machine learning models with COCOMO NASA 1, using all attributes. 

The predictive machine learning models are Support Vector Machine, Linear Regression, and Random 

forest. There are two additional optimized algorithms with Support Vector Machine and Random Forest 

using Particle Swarm Optimization (PSO). The performance of PSO Random Forest (PSORF) and PSO 

Support Vector Machine (PSOSVM) are analyzed by comparing all results from error accuracy, 

minimum, maximum accuracy, correlation accuracy, and statistical accuracy; with basic machine learning 

algorithms such as Support Vector Machine, Linear Regression, and Random Forest. The project 

evaluates the result and records it in the following table. 
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Fig. 3.  Correlation of COCOMO NASA 1 Attributes 

Table 1 explains the experiment made on COCOMO NASA 1 with a training dataset of 80 percent 

and the testing dataset of 20 percent. Based on Table 1, all five proposed algorithms, Support Vector 

Machine, Linear Regression, Random Forest, PSOSVM, and PSORF, are significant due to the p-value 

less than 0.005. The best error accuracy for the MAE value among the five models is the PSOSVM 

model, the lowest, 0.88737150. The second-best MAE is the PSORF model with 1.042509902, followed 

by Support Vector Machine and Random Forest with MAE 31.5403163 and 36.8215429, respectively. 

The worst MAE with the highest value is Linear Regression with 47.7723733. 

Table 1.  Comparison of algorithms for COCOMO NASA 1 Dataset 

Algorithm Support Vector 
Machine 

Linear 
Regression Random Forest PSORF PSOSVM 

MAE 31.5403163 47.7723733 36.8215429 1.042509902 0.88737150 

MSE 2755.54974 5078.17341 2421.11237 1.75629437 1.07215260 

MAPE 0.2901647 0.4632032 0.4032879 0.01249371 0.01126849 

RMSE 52.4933209 71.2613038 49.2048003 1.32525257 1.03544802 

Min-Max Accuracy 0.8019366 0.5631169 0.7328254 0.6957113 0.6545856 

Correlation Accuracy 0.9561591 0.9561002 0.9400819 0.9999501 0.9999951 

P-value 3.67e-05 1.193e-06 5.498e-06 2.2e-16 2.2e-16 

Significant Value Significant Significant Significant Significant Significant 

  

The best MSE among the five models is PSOSV,  which has the lowest MSE, 1.07215260. Next, the 

PSORF model was found as the second-lowest with an MSE value of 1.75629437. Then, followed by 

Random Forest with MSE, 2421.1123716, the highest error accuracy for MSE is Linear Regression with 

MSE, 5068.1734135. The best MAPE among the five models is PSOSVM, with values of 0.01126849. 

The second-lowest MAPE is PSORF with 0.01249371. Then, the third-lowest in the Support Vector 

model with MAPE, 0.2901647. Linear Regression demonstrates the highest value of MAPE with 

0.5614929. The best RMSE among the five models is PSOSVM, with values of 1.03544802. The second 

best RMSE is PSORF with 1.32525257, followed by Random Forest and Support Vector Machine model 

with RMSE of 49.2048003 and 52.4933209, respectively. Lastly, Linear Regression shows the worst 

RMSE with a value of 71.2613038. 

The perfect min-max accuracy is Support Vector Machine with a value of 0.8019366 near 1. Next is 

the Random Forest model, with a value of 0.732854. PSOSVM and PSORF demonstrate min-max 

accuracy values of 0.6957113 and 0.6545856, respectively. The lowest value of min-max accuracy is Linear 

Regression, 0.5631169. The highest value of Correlation accuracy is PSOSVM, 0.9999951. The second 
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highest is followed closely by PSORF with a value of 0.9999501. The correlation accuracy for Support 

Vector Machine is 0.9561591, and for Linear Regression is 0.9561002. The lowest value of correlation 

accuracy is Random Forest, 0.9400819. As Table 1 indicates, Random Forest and Support Vector 

Machine algorithms are chosen to be further investigated with a metaheuristics optimization algorithm, 

Particle Swarm Optimization (PSO). This is considering that the result illustrates in Table 1 where linear 

regression consistently falls behind between Random Forest and Support Vector Machine. PSORF and 

PSOSVM are two optimized algorithms proposed to reach the level of satisfaction of estimation models. 

The results conclude that an extensive experiment (PSOSVM and PSORF) improves the accuracy made 

from the proposed traditional methods. Another promising finding from Table 1, PSOSVM 

outperformed almost all performance metrics except for Min-Max accuracy. The performance of 

PSOSVM and PSORF is further measured based on their comparison with the traditional methods. 

Table 2 illustrates the performance metrics used to assess all three proposed algorithms using three 

attributes, including all attributes, five selected attributes, and one attribute (LOC only).  

Table 2.  Comparison of COCOMO NASA 1 Dataset with Different Attributes 

 Algorithm Correlation 
Accuracy 

P-
value 

Significant 
Value 

MMRE A 
Measure 

Rank-
Sum 

Significant 
Rank Sum 

All Attributes 

SVM 0.8157183 0.00122 Significant 127.50 0.45138 0.7074 Significant 

Random Forest 0.6622912 0.01895 Significant 110.70 0.40972 0.4704 Significant 

PSORF 0.9999501 2.2e-16 Significant 1.2493 0.47222 0.8398 Significant 

PSOSVM 0.9999951 2.2e-16 Significant 1.1268 0.47917 0.8852 Significant 

5 Attributes 

SVM 0.7636789 0.00384 Significant 109.68 0.42361 0.5443 Significant 

Random Forest 0.8642062 0.00288 Significant 108.41 0.42361 0.5443 Significant 

PSORF 0.9999768 2.2e-16 Significant 0.8860 0.53472 0.7949 Significant 

PSOSVM 0.9999958 2.2e-16 Significant 0.7756 0.50694 0.977 Significant 

LOC Only 

SVM 0.7772104 0.00293 Significant 66.986 0.45833 0.7508 Significant 

Random Forest 0.8552052 0.00039 Significant 67.671 0.48611 0.931 Significant 

PSORF 0.9999691 2.2e-16 Significant 1.4920 0.5 1 Significant 

PSOSVM 0.9999840 2.2e-16 Significant 0.9382 0.52778 0.8398 Significant 

 

The result highlights that between the trained algorithms for all attributes and five selected 

attributes, the five selected attributes demonstrate performance better in producing more accurate 

results. The correlation accuracy of the five selected attributes has a higher relationship between the 

actual effort and the predicted effort values than all attributes. Besides, the MMRE of five selected 

attributes has lower values than all attributes, and this shows that five selected attributes have a more 

accurate estimation between the actual and predicted effort values. A Measure shows only slight 

differences between all attributes and the five selected attributes. Support Vector Machine with all 

attributes has no effect differences compared to Random Forest model. The rank-sum of all attributes 

and five selected attributes are statistically significant; there is enough evidence to support a null 

hypothesis and reject the alternative hypothesis.  

The result of this analysis is then compared with an experiment using only one attribute, LOC. The 

correlation accuracy of using LOC is an increase compared to five attributes and all attributes. The p-

value of Pearson's correlation also shows that the models are statistically significant. The MMRE 

illustrates in the LOC table has better results than using all attributes and five selected attributes. The 

Vargha and Delaney A measure for LOC also shows no difference, which means the distribution of 

actual and predicted effort values are identical. The Wilcoxon rank-sum test is statistically significant 

where there is enough evidence to support a null hypothesis and reject the alternative hypothesis since 

the p-value of both machine learning models is higher than 5 percent. 

Another analysis that can be deduced from Table 2 is that among three different experiments with 

attributes, PSOSVM continuously outperformed other trained models such as traditional Random 

Forest and Support Vector Machine and PSORF: for all the performance metrics. However, there are 
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two notable exceptions here, where PSORF outperformed A measures and Wilcoxon Rank Sum test for 

LOC attributes experiment.   

All these analyses conclude that not all attributes are much needed to be trained by the trained 

algorithms. From the experiment, using one attribute, LOC, can have closer MMRE towards the 

COCOMO prediction model, higher correlation accuracy, and identical distribution of actual and 

predicted effort values. The results also prove that optimizing COCOMO models with Particle Swarm 

Optimization illustrates significantly better results due to increasing accuracy rates while reducing the 

error accuracy and statistically significant, which implies the differences between actual effort and 

predicts effort are very small. Overall, the PSOSVM yields increasingly good results for the estimation 

software model, COCOMO. 

4. Conclusion 
Many existing machine learning algorithms can train predictive models; however, the right and 

suitable machine learning model is needed to estimate accurately. In this research, the five selected 

attributes with high positive correlation toward actual effort attribute are obtained from the correlation 

matrix, DATA, STOR, LOC, TIME, and TOOL. The five important attributes give better results 

compared to using all the attributes in COCOMO dataset. Hence, not all attributes in the dataset are 

relevant to be used for estimating software development. In this paper, we analyzed the efficacy of 

applying metaheuristics swarm intelligence, Particle Swarm Optimization (PSO), as an optimization 

algorithm, by optimizing its parameters to increase the accuracy level of the COCOMO model. An 

optimized Support Vector Machine and Random Forest algorithms (PSOSVM and PSORF) impressively 

result with the COCOMO NASA dataset. However, among these two optimized PSO-based algorithms, 

PSOSVM outperformed all evaluation criteria when compared with all attributes. To conclude, 

optimizing COCOMO parameters with the PSO method provides an improved estimate compared to 

the conventional COCOMO model. 
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