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1. Introduction 

Various practical fields rely on optimization mechanisms to achieve high performance. To solve 
optimization problems, optimization algorithms are utilized in systems in various domains, including 
science, engineering, manufacturing, and economics [1], [2]. For each optimization problem, there are 
a set of possible solutions known as the solution space [3]. The possible solution identified by the 
optimization algorithm is usually considered a global optimum if it is better than the other feasible 
solutions (perhaps a local optimum) [3]. Many engineering and scientific optimization applications 
contain many decision variables (known as dimensions) [2]. These optimization applications may be 
represented as a high-dimensional optimization problem [1], [2]. This may include problems such as 
sour water stripping plants [4], heat exchangers in thermal fields [5], clustering for data mining [6], 
scheduling with a large number of resources [7], and vehicle routing problems [8]. Computing a global 
solution for the high-dimensional optimization problem is not easy. In high-dimensional optimization 
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 Particle swarm optimization (PSO) is a simple metaheuristic method to 
implement with robust performance. PSO is regarded as one of the 
numerous researchers' most well-studied algorithms. However, two of its 
most fundamental problems remain unresolved. PSO converges onto the 
local optimum for high-dimensional optimization problems, and it has slow 
convergence speeds. This paper introduces a new variant of a particle swarm 
optimization algorithm utilizing Lévy flight-McCulloch, and fast simulated 
annealing (PSOLFS). The proposed algorithm uses two strategies to 
address high-dimensional problems: hybrid PSO to define the global search 
area and fast simulated annealing to refine the visited search region. In this 
paper, PSOLFS is designed based on a balance between exploration and 
exploitation. We evaluated the algorithm on 16 benchmark functions for 
500 and 1,000 dimension experiments. On 500 dimensions, the algorithm 
obtains the optimal value on 14 out of 16 functions. On 1,000 dimensions, 
the algorithm obtains the optimal value on eight benchmark functions and 
is close to optimal on four others. We also compared PSOLFS with another 
five PSO variants regarding convergence accuracy and speed. The results 
demonstrated higher accuracy and faster convergence speed than other PSO 
variants. Moreover, the results of the Wilcoxon test show a significant 
difference between PSOLFS and the other PSO variants. Our experiments' 
findings show that the proposed method enhances the standard PSO by 
avoiding the local optimum and improving the convergence speed.    
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problems, the search space grows exponentially, affecting the exploration performance of the algorithm 
[9]–[11]. Also, local optima solutions increase extensively. To a certain extent, the algorithm will reach 
a state where it will be stuck inside some local optima where it cannot further explore the search space 
and find its way to the optimal solution [12], [13]. Therefore, the algorithm effectively requires search 
strategies to explore and exploit the search space [14]. Kennedy and Eberhartin [15] introduced one of 
the most efficient optimization algorithms called the Particles swarm optimization algorithm (PSO). 
PSO shows robust performance in various applications making it attractive to many researchers and 
engineers [16]–[18]. PSO has been widely applied for solving real-world optimization problems such as 
efficient power utilization, path planning of mobile robots, and different scientific problems [19]–[21]. 

PSO has two significant issues when dealing with high-dimensional optimization problems. First, 
PSO is always trapped into some local optima due to inefficient exploration [22], [23] and lack of 
exploitation capability [24], [25]. Second, PSO exploration involves many fitness evaluations, which may 
affect the convergence speed [10], [26]. Although several modifications of PSO have been introduced to 
tackle the high-dimensional optimization problem, becoming trapped in the local optimum and 
problems with acquiring inefficient solutions are persisting [12], [27]. Moreover, these modifications do 
not appropriately handle the relationship between exploitation and exploration [19]. For that, a good 
balance between exploration and exploitation is required for PSO to achieve a global solution for any 
high-dimensional optimization problem [28], [29]. This paper attempts to resolve the high-dimensional 
optimization problem by proposing a new variant of particle swarm optimization utilizing Lévy flight-
McCulloch, and fast simulated annealing (PSOLFS). PSOLFS is meant to acquire a global optimum 
solution and fast convergence speed for the high-dimensional optimization problem. We design 
PSOLFS to have a balanced approach between exploration and exploitation. We implement Lévy flight-
McCulloch in the PSO position to maximize the algorithm's exploration of the large search space and 
create diversity in each exploration's starting point position. We implement Fast simulated annealing in 
the late iteration to make the algorithm select the most accurate solution. 

The following points summarize the contributions of this paper: 1) We discuss the problem of 
computing a global solution for the high-dimensional optimization problem; 2) We conduct a 
comprehensive review of the modifications already done to improve PSO; 3) We introduce a new variant 
of particle swarm optimization based on levy flight-McCulloch and fast simulated annealing named 
PSOLFS. The main aim of PSOLFS is to obtain a global solution for a high-dimensional optimization 
problem; 4) We evaluate PSOLFS on sixteen benchmark functions based on convergence accuracy and 
speed; and 5) We compare the efficiency of PSOLFS with five PSO variants through several experiments. 
The experimental results demonstrate that PSOLFS outperforms the existing approaches in convergence 
accuracy and speed. We organize this paper as follows. Section 2 provides a detailed review of PSO, Levy 
flight, and fast simulated annealing. We review several variants of PSO in section 3. In section 4, we 
explain PSOLFS and present its pseudocode and steps. We discuss the experiments and results in section 
5. Finally, we outline the conclusion and some future work recommendations in section 6. 

2. Related Work 

This section explains the three algorithms used to develop the proposed approach of computing the 
global solution for the high-dimensional optimization problem. We review PSO, levy flight, and fast 
simulated annealing. For each of these algorithms, we explain the algorithm and its equations in detail. 

2.1. Particle Swarm Optimization (PSO) 

Kennedy and Eberhart first introduced a swarm intelligence-based algorithm named particle swarm 
optimization algorithm (PSO) in 1995 [15]. PSO is a stochastic robust optimization method that 
depends on swarms' movement and intelligence [19], [30]. The swarm consists of many particles 
theorized to move toward a better solution during exploitation and exploration of the search space [16]. 
The particles in the search space present various potential solutions. Each particle represents a solution 
in the search space of a given problem. The particles have two best positions; (1) personal (𝑃𝑏𝑒𝑠𝑡) and; 
(2) global 𝐺𝑏𝑒𝑠𝑡 [29]. 𝑃𝑏𝑒𝑠𝑡 presents the best solution that is achieved by an individual particle. 𝐺𝑏𝑒𝑠𝑡 
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is the best solution located by the entire swarm. The two best positions make the particle learn from its 
experience and the entire group [26]. PSO relies on two characteristics belonging to every particle: 
position and velocity. These poisons are updated based on the fitness value comparison between the 
current and the new position. This process is repeated until the swarm finds the global or optimal 
solution. The new velocity particle is updated using Eq. (1) [15]. 

𝑉𝑖(𝑡 + 1) =  𝑉𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡))                                             ()  

where i is the particle index; t is the number of iterations; 𝑉(𝑡) is the current velocity of the particle; 
𝑋𝑖(𝑡) is the current position of the particle; 𝑃𝑏𝑒𝑠𝑡 represents the best previous position of particle 𝑖; 
𝐺𝑏𝑒𝑠𝑡 represents the best position among all particles; 𝑟1, 𝑟2 random numbers with values between 
(0,1); 𝑐1, and 𝑐2 are positive numbers called acceleration coefficients that guide the particle toward the 
particle best and swarm best positions.  

 The velocity updating formula consists of three parts [26]: 1) The previous velocity of the particle 
𝑉(𝑡): It serves as a memory of the previous swarm direction. The memory is called 'momentum' and 
prevents the particle from changing its direction. The momentum makes the particle move in the same 
previous iteration direction; 2) The cognitive part 𝑐1 ∗  𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡 −  𝑋𝑖(𝑡)): It presents the personal 
experience of the particle. The cognitive part pulls the particle toward its best individual position; and 
3) The social part 𝑐2 ∗  𝑟2 ∗ (𝑃𝑏𝑒𝑠𝑡 −  𝑋𝑖(𝑡)): It represents the cooperation of knowledge between 
the particles. The particle updates its position based on Eq. (2) [15].  

𝑋𝑖(𝑡) = 𝑋𝑖 (𝑡) +  𝑉𝑖(𝑡 + 1)  () 

where 𝑉(𝑡 +  1) presents the new velocity of the particle that is calculated using the formula given in 
Eq. (1). 

PSO has some drawbacks that prevent the algorithm from working effectively [16]. Researchers have 
solved this problem by certain modifications on the basic version, among them Shi and Eberhart who 
introduced the inertia weight (𝑤) to control exploration and exploitation in Eq. (2). The new velocity 
equation is in Eq. (3). 

𝑉𝑖(𝑡 + 1) = 𝑤 ∗ 𝑉𝑖(𝑡) + 𝑐1 ∗ 𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡))                              () 

2.2. Levy Flight 

Lévy flight is a type of random walk introduced by Paul Lévy in 1937 and has the characteristic of 
intensive probability in its movement [30]–[33]. Yang, Ting, and Karamanoglu [31] implied that Lévy 
flight has an excellent capability to explore the search space. A new swarm intelligence-based algorithm 
Cuckoo Search (CS) introduced by Yang and Deb [32] contributed Lévy flight in the search strategy of 
the algorithm. Many researchers examined CS, and the result showed that it had an advanced 
performance [32]. Two algorithms are used to create the random steps of levy flight, including Mantegna 
algorithm and McCulloch algorithm [32]. 

2.2.1. Mantegna Algorithm 

Mantegna algorithm generates random steps based on Lévy stable distribution. Mantegna's algorithm 
makes random steps by Eq. (4) [34]. 

𝑠 =
𝑢

|𝑣|
1

𝛽

  (4)  

where u and v identified from normal distributions, 𝑢~𝑁(0, 𝜎𝑢
2),    𝑣~𝑁(0, 𝜎𝑣

2) and 𝜎𝑢 is given by 
Eq.(5), where Γ(β) is a Gamma function. 

𝜎𝑢 = {
(𝛤(1+𝛽)𝑠𝑖𝑛 ( 𝛱𝛽/2))

(𝛤[(1+𝛽)/2]𝛽2((𝛽−1)/2) 
}(1/𝛽)    (5) 

2.2.2. McCulloch Algorithm 

The McCulloch algorithm was implemented by McCulloch [33], [35] to create stable random 
variables. The following formula is used to return random steps [36]. 
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(𝑐𝑁1 𝑁2)

𝐷
+ 𝜏 ∽ 𝑆_𝑎 (𝑐, 𝛽, 𝜏)                            () 

where  

𝑁1 = 𝑠𝑖𝑔𝑛[𝛼𝜑 + 𝑡𝑎𝑛
−1(𝛽𝑡𝑎𝑛 (𝛼𝜋/2))] ;  

𝑁2 = (𝑐𝑜𝑠 [(1 − 𝛼)𝜑 − 𝑡𝑎𝑛
−1 (𝛽 𝑡𝑎𝑛 (𝛼𝜋/2))])(1/𝛼−1); and  

𝐷 = (𝑐𝑜𝑠 [(1 − 𝛼)𝜑 − 𝑡𝑎𝑛−1 (𝛽 𝑡𝑎𝑛 (𝛼𝜋/2))])(1/𝛼−1) (cos(𝜑))(1/𝛼) 𝑤^(1/𝛼−1). 

 The equations (6) return a n x m matrix of random numbers. Based on the equation, the required 
parameters are characteristic exponent 𝛼, skewness parameter 𝛽, scale 𝑐, and location parameter 𝜏. The 
minimum value of 𝛼 is 0.1 because of the non-negligible possibility of overflow. When an input is not 
in the valid range, the resultant matrix contains NaNs. The algorithm returns random numbers using 
Eq. (7).  

𝑥 =
(𝑐𝑜𝑠 ((1−𝛼)𝜑)/𝑤)(1/𝛼−1)  𝑠𝑖𝑛 (𝛼𝜑))/

(𝑐𝑜𝑠 (𝛼) )(1/𝛼)
 + 𝜇  () 

where 𝑤,𝜑  are independent random variable variables, α is an index of stability αϵ [0,2], σ scale 
parameter σ>0 and a location parameter μϵR. 

The McCulloch algorithm is a faster and more accurate mechanism than Mantegna [32], [33]. 

2.3. Fast Simulated Annealing 

Fast simulated annealing (FSA) is a modified version of the simulated annealing algorithm (SA)  [37]. 
SA has advantages over other local search methods, including taboo search and gradient descent [35]. 
SA can eliminate the local optimum and find the global optimum, and it has efficient exploitation 
capability [38]. FSA has a better performance than SA and can accelerate the creation of the neighbor's 
solutions [39]. FSA has two main factors: temperature reduction and neighbor points creation. FSA 
uses Eq. (8) to create random neighbor points [34]. 

𝐺(𝑥) =
𝑇

((𝛥𝑥2+𝑇2)(𝐷+1)/2)
  (8) 

D is the dimensions of the search space. FSA uses Eq. (9) to reduce the temperature [34]. 

𝑇𝑘 =
𝑇0

𝐾
  (9) 

Tk is the current temperature, and T0 is the initial temperature.                                     

FSA starts its process by creating random points. Then, the algorithm determines the best solution 
by comparing the existing and nearest solutions. If the new solution has a better value than the previous 
one, the algorithm accepts the new solution. Otherwise, the algorithm determines the new solution by 
Eq. (10). 

𝑝 = 𝑒
(∆𝐸)

𝐾 > 𝑟       (10) 

∆E is the difference between the current and new point, and K is the number of iterations. 

2.4. Modification Of the Velocity/Position Update Equations 

Typically, PSO constitutes two equations: velocity and positions, as we explain in section 2.1. Several 
studies have introduced improvements in PSO by modifying the velocity and positions [29]. The work 
in [40] introduced PSO with adaptive inertia weight inertia to enhance the convergence speed of the 
particles. The size of the inertia weight was adjusted dynamically to control the speed of particles. The 
algorithm showed a slight improvement over PSO. The same idea was discussed in [41]; however, a 
population diversity function was used to maintain the inertia weight. The work proposed in [42]  
mutated the velocity of the particles. The mutation was performed on 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 to help the 
particles change their position when falling into the local optimum. The mutation used three 
mechanisms: Gauss, Lévy, and Cauchy probability [43]. Cauchy and Lévy were used to mutate the 
particles during the exploration, while Gauss mutated the particles during the exploitation. The 
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algorithm showed improvement in convergence accuracy in some functions. The works contributed by 
[43] combined PSO with Lévy flight. A limit value was set for each particle. If the particle cannot 
improve its best position, the limit value is increased. If the particle exceeded the limit value, the particle 
updated the position based on the PSO equation; otherwise, the particle updated the position of particles 
based on Lévy flight [44]. The algorithm presented a soupier performance in the evaluation experiments. 
However, the dimensions of all experiments were quite small. 

The work contributed by [26] attempted to enhance the algorithm proposed in [43]. In [24], the 
velocity, not the position, was updated using levy flight. The work introduced in [44] utilized three 
strategies to improve PSO: chaotic optimization, adaptive inertia weight, and dynamic linear acceleration 
factor. The chaotic method was performed to initialize PSO, the adaptive inertia weight was used to 
decrease the inertia weight during the iteration process, and the acceleration factor was performed to 
change the value of the acceleration in each iteration dynamically. The study [45] proposed a new 
modification of PSO using two strategies: dividing the particles into groups and exponential inertia 
weight. The proposed approach was based on dividing the particles into groups, each group using 
different acceleration factors to update the particle's velocity. The inertia weight was updated based on 
the exponential function. The proposed algorithm was still far from the global optimum. The work 
reported in [46] enhanced PSO using Lévy flight. The idea of the work was quite similar to the work in 
[40]. A random value was defined. The particle's position was updated based on the Lévy flight if the 
random value was larger than a specified number. Otherwise, the position was updated based on PSO 
equations. The approach introduced in [47], [48] mutated the particles' position of PSO with the help 
of Gaussian distribution. The proposed mechanism created a mutation in the selected particles' position. 
Combining PSO with Gauss was to make diversity on the swarm and improve the convergence accuracy. 
The work in [49] improved the exploration ability of PSO. The particles were derived into oscillatory 
trajectories based on several equations. The equations also updated the cognitive and social learning 
factors and the inertia weight settings. Lastly, The paper [50] introduced a multi-swarm strategy to 
adjust swarm size during the optimization process. Besides, an adaptive exploitation strategy is employed 
to maintain the fitness differences between exemplars and updated particles. In this way, the velocity of 
the particles is updated effectively. Although the algorithm appears to have high accuracy compared with 
other algorithms, it is long and complicated. 

2.5. Hybrid PSO with Other Search Techniques 

Hybrid PSO with other search techniques is one of the robust strategies that has attracted many 
researchers [51], [52], [53], [54]. The study presented in [55] proposed PSO with chaos. Chaos is a 
powerful search method characterized by high accuracy and high speed. The work presented in [56] 
improved the work in [49] by mutating the particles to narrow the search space. The work reported in 
[57] proposed a hybrid particle swarm optimization with Simulated Annealing (SA). SA was applied in 
the small area of search space. Also, the work in [52] introduced a hybrid PSO and SA with the same 
mechanism of the algorithm presented by the work in [51]. However, the work in [58] changed the 
temperature equation of SA.The approach in [44], [48] enhanced the local search ability of PSO  by 
hybridizing PSO and grid search. The grid search method in this work searched for the global solution 
separately in each dimension. The work presented in [52] introduced a hybrid PSO with an artificial bee 
colony (ABC). The two algorithms searched for the global solution individually. The two algorithms 
worked simultaneously, and the information was outflowed between the two algorithms.  

The work contributed by [28], [29] hybridized the artificial bee colony (ABC) and PSO to balance 
exploration and exploitation. PSO was performed for the exploitation mechanism, while the artificial 
bee colony performed the exploration. The work reported in [59] proposed a hybrid of PSO and harmony 
search (HS). In this study, PSO took advantage of the harmony search and harmony memory for 
searching for the global solution. The work presented in [23] announced a hybrid of particle swarm and 
genetic algorithm, in which the dimensionality reduction procedure was applied by dividing the swarm 
population into sub-swarms using the crossover operator of a genetic algorithm. Also, the mutation 
operator of the genetic algorithm was utilized in the swarm population to create diversity in the swarm. 
The paper of [24] introduced a new hybrid of PSO and SA. The algorithm worked by sharing the 
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mechanism between the two algorithms. Last, the work in [53] proposed a hybrid PSO with an adaptive 
learning strategy. The algorithm applied a self-learning-based candidate generation strategy to enhance 
the exploration capability.  

3. Method 

We proposed a Particle Swarm Optimizations Based On Levy- Mcculloch Flight And Fast Simulated 
Annealing (PSOLFS) based on the two techniques: Lévy flight-McCulloch and fast simulated annealing. 
Fig.1 shows a flowchart of PSOLFS. We use these techniques to achieve a balance between exploration 
and exploitation. 

 

Fig. 1.  Flowchart of PSOLFS algorithm 
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 At the beginning of the iteration, high exploration gives a high chance to find close to the optimal 
solutions. While at the end of the iteration, high exploitation gives the particles a chance to find the 
most accurate solution within the promising area. Using Lévy flight- McCulloch, the particles have two 
merits over PSO. First, the particles can explore a wide search area and explore the search space with a 
significant jump size to find a promising region. This procedure takes less time due to the mechanism 
of McCulloch over another type of Lévy Mantegna. Second, the particles have diversity in their position, 
which they gain from the various values of a Lévy variance. By doing so, the particles do not lose their 
ability to update their position. After many iterations, PSOLFS calls the FSA algorithm. FSA is utilized 
to refine the global area, so FSA help to find the most accurate results. FSA is applied in the promising 
area founded by PSO- Lévy flight- McCulloch. As the original PSO, the particles are randomly initialized 
in the search space. The particles' fitness values are evaluated to determine the personal best fitness value 
𝑃𝑏𝑒𝑠𝑡 and swarm best fitness value 𝐺𝑏𝑒𝑠𝑡. The particle updates its velocity using the original PSO 
equation given by Eq. (3). The particle updates its position using Eq. (11) instead of Eq. (2). 

𝑋𝑖(𝑡 +  1)  =  𝑉𝑖(𝑡 +  1)  +   𝐿é𝑣𝑦 𝑓𝑙𝑖𝑔ℎ𝑡 (𝑋𝑖(𝑡))  () 

where Lévy flight (𝑋(𝑡))  =  𝑋𝑖(𝑡)  +  𝑠𝑡𝑒𝑝 ⊕ random (size (𝑋𝑖(𝑡)), and the step is determined by 
Eq. (6), ⊕ which presents element-by-element multiplication, and random is the random number for 
all dimensions' sizes. Once the algorithm reaches a defined sub-iteration number, the algorithm applies 
fast simulation in the founded global area. The algorithm creates random points using Eq. (8) and 
evaluates the points. If the previous solution is better than the new solution, the algorithm creates points 
based on Eq. (10) and decreases the temperature using Eq. (9). The algorithm creates the point, evaluates 
the solution, and decreases the temperature until it reaches the stopping criteria. With the help of FSA, 
PSOLFS can exploit the global area to find the most accurate solution.  

4. Results and Discussion 

This section presents and discusses the evaluation experiments of the PSOLFS algorithm. We 
consider various algorithms for the comparison experiments. We carry out the experiments on a PC with 
an Intel Core i5 M460, 2.5 GHz CPU, 4GB RAM, and Windows 10, 64-bit operating system. Subsection 
A outlines the benchmark functions considered in this work. We present the convergence accuracy and 
algorithm convergence speed in subsections B and C. Section D shows the statistical analysis. 

4.1 Benchmark Functions 

This section lists the benchmark functions used in this work to validate the proposed algorithm. The 
functions considered in this work are the most popular functions used in most of the previous works, 
including these studies [54], [60], [61]. The first six functions are unimodal, while the functions from 
𝑓7  −  𝑓16 are multimodal. The modality presents the number of local optima in functions. The unimodal 
functions have one local optimum, while the multimodal functions have one or more local optimums 
[62]. Multimodal functions constitute the most difficult class of benchmark functions [63]. The 
unimodal functions are utilized to prove the solution quality and convergence of an algorithm; however; 
the multimodal functions are used to determine how effectively an algorithm avoids local optimum 
solutions [64]. All the tests functions have a minimum value at 𝑥^ ∗=  (0,0, . . . ,0) for 𝑖 = 1,2, 3, . . 𝐷. 
Table 1 summarizes the details of each benchmark function considered in this work. The table presents 
the function name, the corresponding formula, the range of the dimension, and the modality of the 
function. 

Table 1.  The benchmark functions used in our experiments 

Function Name Formula Range Modality 

Rosenbrock 
𝒇𝟏(𝒙) = ∑[𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊

𝟐)𝟐 + (𝒙𝒊 − 𝟏)
𝟐]

𝑫−𝟏

𝒊=𝟏

 [-5,5] Unimodal 

Sphere 𝑓2(𝑥) = ∑ 𝑥𝑖
2𝐷

𝑖=1 , [-100,100] Unimodal 

Step 𝑓3(𝑥) =∑(𝑥𝑖 + 0.5)
2

𝐷

𝑖=1

 [-100,100] Unimodal 
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Table 1. (Cont.) 

Function Name Formula Range Modality 
    

Quatic 𝑓4(𝑥) =∑𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1]

𝐷

𝑖=1

 [-1.28,1.28] Unimodal 

Quadric 𝑓5(𝑥) =∑(∑ 𝑥𝑗
𝑖

𝑗=1
)

2𝐷

𝑖=1

 [-1.28,1.28] Unimodal 

Ellipitic 𝑓6(𝑥) =∑(106)
𝑖−1
𝐷−1 × 𝑥𝑖

2

𝐷

𝑖=1

 [-1,1] Unimodal 

Rastrigin 

 
𝑓7(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)
2]

𝐷−1

𝑖=1

 [-5.12,5.12] Multimodal 

 

Ackley 

 

𝑓8(𝑥) = 20 + exp(1) − 20 exp(−0.2√
1

𝐷
∑𝑥2
𝐷

𝑖=1

)

− exp (1/𝐷∑ cos (2𝜋𝑥𝑖)
𝐷

𝑖=1
 

[-5,5] Multimodal 

Griewank 𝑓9(𝑥) =∑𝑥𝑥𝑖
2/4000

𝐷

𝑖=1

−∏cos(𝑥𝑖/𝑠𝑞𝑟𝑡(𝑖)) + 1

𝐷

𝑖=1

 [-600,600] Multimodal 

Schwefel2.4 𝑓10(𝑥) =∑(𝑥𝑖 − 1)
2 + (𝑥1 − 𝑥𝑖

2)2
𝐷

𝑖=1

 [0,10] Multimodal 

Generalized 
penalized 1 

𝑓11(𝑥) =
𝜋

𝐷
{10(𝑠𝑖𝑛(𝜋𝑦1))

2

+∑(𝑦𝑖 − 1)
2 [1

𝐷−1

𝑖=1

+ 10(𝑠𝑖𝑛(𝜋𝑦𝑖+1))
2
] + (𝑦𝐷 − 1)

2}

+∑𝑢(𝑥𝑖 , 10,100,4)

𝐷

𝑖=1

 

Where 𝑦𝑖 = 1 +
(𝑥𝑖+1)

4
 

 

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝛼)
𝑚  𝑥𝑖 > 𝛼

0 − 𝛼 ≤ 𝑥𝑖 ≤ 𝛼  ,    𝑖 = 1, … , 𝐷

𝑘(−𝑥𝑖 − 𝛼)
𝑚  𝑥𝑖 < −𝛼

 

[-50,50] Multimodal 

Generalized 

penalized 2 

𝑓12(𝑥) =∑0.1 {𝑠𝑖𝑛(3𝜋𝑥𝑖)
2

𝐷

𝑖=1

+∑(𝑥𝑖 − 1)
2 [1

𝐷−1

𝑖=1

+ (𝑠𝑖𝑛(3𝜋𝑥𝑖+1))
2
]

+ (𝑥𝐷 − 1)
2 [1 + (𝑠𝑖𝑛(2𝜋𝑥𝐷))

2
]}

+∑𝑢(𝑥𝑖 , 5,100,4)

𝐷

𝑖=1

 

[-50,50] Multimodal 

Qing 𝑓13(𝑥) =∑(𝑥𝑖
2 − 𝑖)2

𝐷

𝑖=1

 [-100,100] Multimodal 

Salmon 𝑓14(𝑥) = 1 − 𝑐𝑜𝑠

(

 2𝜋√∑𝑥𝑖
2

𝐷

𝑖=1
)

 + 0.1√∑𝑥𝑖
2

𝐷

𝑖=1

 [-100,100] Multimodal 

Quintic 𝑓15(𝑥) =∑|𝑥𝑖
5 − 3𝑥𝑖

4 + 4𝑥𝑖
3 + 2𝑥𝑖

2 − 10𝑥𝑖
1 − 4|

𝐷

𝑖=1

 [-10,10] Multimodal 

Alpine 𝑓16(𝑥) =∑|𝑥𝑖𝑠𝑖𝑛𝑔(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

 [-10,10] Multimodal 
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4.2 Convergence Accuracy Results on 500 and 1000 dimensions 

This section presents and discusses the convergence accuracy results in terms of mean and standard 
deviation. For each 16 test functions, the six algorithms PSO, PSO-SA, LFPSO, PSOLF, LFAPSO, 
and PSOLFS are run independently for about 20 times on 500 and 1000 dimensions. Table 2 
demonstrates the convergence accuracy results in terms of the mean and standard deviation of 20 runs 
with 20000 fitness function evaluations (FEs) of sixteen benchmark functions on 500 dimensions for the 
six algorithms (PSO, PSO-SA, LFPSO, PSOLF, LFAPSO, and PSOLFS). We can see from the result 
in Table 2 that PSOLFS outperforms other PSO variants in all functions for both mean and standard 
deviation. PSOLFS has an optimum value in 14 out of 16 functions. PSOLFS has an optimum value in 
all six unimodal functions  𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, and 𝑓6 and in eight multimodal functions 𝑓7, 𝑓8, 
𝑓9, 𝑓10, 𝑓11, 𝑓14, 𝑓15 and 𝑓16. However, PSOLFS doesn't obtain the optimal value for functions 𝑓11 and 
𝑓12. We can also notice that among the other PSO variants, PSOLF has a better-quality solution than 
the others; it achieves the optimal results in the three functions. PSO, PSO-SA, LFPSO, and LFAPO 
algorithms obtain a better outcome for 𝑓13 and 𝑓14 comparing to the other functions. 

Table 2.  Convergence Accuracy of the Algorithms on 500 dimensions 

Functions Values PSO PSO-SA LFPSO PSOLF LFAPSO PSOLFS 
𝑓1 MEAN 6.84E+5 3.07E+5 2.07E+2 2.67E+2 1.64E+3 0 

STD 3.24E+5 1.45E+5 1.52E+2 9.51E+1 7.76E+2 0 

𝑓2 MEAN 4.87E+7 5.45E+6 4.85E-8 5.35E-19 4.85E+4 0 

STD 2.34E+6 1.34E+5 2.52E-10 7.41E-19 5.79E+2 0 

𝑓3 MEAN 9.53E+4 7.32E+3 5.63E-7 5.83E-29 5.53E+4 0 

STD 6.43E+4 4.31E+3 3.25E-8 3.48E-29 8.70E+3 0 

𝑓4 MEAN 1.34E+4 2.54E+4 5.63E+3 4.05E+3 4.56E+4 0 

STD 9.73E+3 3.96E+4 2.10E+3 6.68E+2 1.67E+4 0 

𝑓5 MEAN 7.32E+6 4.34E-9 3.20E-13 4.63E-20 4.47E-12 0 

STD 3.02E+5 3.87E-11 3.98E-16 6.81E-22 3.90E-13 0 

𝑓6 MEAN 9.64E+7 3.56E+7 7.97E-14 7.74E-17 5.38E-11 0 

STD 3.46E+6 7.99E+6 6.43E-15 4.19E-18 1.35E-11 0 

𝑓7 MEAN 7.34E+5 8.93E+3 5.76E+1 7.24E-56 6.53E+1 0 

STD 3.79E+4 5.76E+3 2.47E+2 7.81E-58 4.79E+2 0 

𝑓8 MEAN 4.67E+3 2.46E+3 1.45E+1 0 2.23E+1 0 

STD 5.33E+2 9.88E+2 1.42E+1 0 1.48E+1 0 

𝑓9 MEAN 9.60E+4 3.48E+1 3.69E-6 0 6.34E+1 0 

STD 3.32E+3 2.74E+1 9.65E-7 0 1.71E+2 0 

𝑓10 MEAN 4.30E+4 6.42E+4 1.65E+2 2.32E-6 4.34E+2 0 

STD 9.12E+3 2.34E+3 7.82E+1 5.29E-7 6.55E+2 0 

𝑓11 MEAN 8.32E+3 1.07E+4 9.98E-2 4.14E-4 7.92E+2 0 

STD 2.54E+3 7.23E+3 5.76E-2 7.37E-5 6.92E+2 8.05E-36 

𝑓12 MEAN 9.64E+4 7.43E+4 6.87E+2 8.47E-3 6.86E+4 1.76E-38 

STD 7.53E+4 6.07E+4 4.87E+2 2.83E-3 4.32E+4 7.65E-33 

𝑓13 MEAN 5.32E-5 5.31E-5 9.78E-13 3.45E-16 4.87E-5 9.85E-36 

STD 4.32E-4 3.76E-4 9.12E-14 9.25E-18 9.86E-8 0 

𝑓14 MEAN 3.27E-2 3.21E-9 4.45E-12 7.54E-13 5.43E-6 0 

STD 7.87E-1 5.37E-7 8.45E-12 3.73E-14 9.30E-8 0 

𝑓15 MEAN 7.35E+8 4.21E+4 3.76E-8 3.56E-6 5.78E+1 0 

STD 5.35E+8 3.70E+3 9.54E-10 6.87E-7 8.49E+1 0 

𝑓16 MEAN 7.89E+7 7.33E+5 1.43E+6 0 1.85E+3 0 

STD 3.23E+6 3.56E+5 8.56E+5 0 2.65E+3 0 

 

As we can see from Table 3, PSOLFS maintains a stable performance despite the increment in the 
number of dimensions to 1000. Increasing the dimensions of the functions did not prevent the algorithm 
from obtaining the optimum value. Table 6 demonstrates the convergence accuracy results in terms of 
the mean and standard deviation of 20 runs with 50000 fitness evaluation function (FEs) of sixteen 
benchmark functions on 1000 dimensions for the six algorithms (PSO, PSO-SA, LFPSO, PSOLF, 
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LFAPSO, and PSOLFS). PSOLFS still outperforms the five PSO variants. PSOLFS yields the optimum 
value on the functions: 𝑓3 , 𝑓5 , 𝑓6 , 𝑓7 , 𝑓9 , 𝑓13. PSOLFS still outperforms the five PSO variants. 
PSOLFS yields the optimum value on the functions 𝑓3 , 𝑓5 , 𝑓6 , 𝑓7 , 𝑓9 , 𝑓13, 𝑓14, 𝑓15 and close to 
optimal results on 𝑓2, 𝑓12. It obtains high accuracy results on 𝑓1, 𝑓4, 𝑓10, 𝑓11. PSOLF outperforms 
PSOLFS in the two functions 𝑓8 and 𝑓16. 

Table 3.  Convergence Accuracy of the Algorithms on 1000 Dimensions 

Functions Values PSO PSO-SA LFPSO PSOLF LFAPSO PSOLFS 
𝑓1 MEAN 3.29E+8 9.14E+6 6.36E+5 7.84E+5 2.54E+6 9.542E-9 

STD 9.76E+7 2.45E+6 3.51E+5 1.24E+5 7.30E+5 6.65E-10 
𝑓2 MEAN 4.30E+5 4.39E+5 3.42E-4 9.67E-22 3.69E+3 9.74E-56 

STD 3.2E+5 1.86E+5 4.32E-6 8.05E-25 1.06E+3 3.22E-58 
𝑓3 MEAN 4.32E+5 6.34E+5 4.86E-6 5.31E-23 7.38E+4 0 

STD 3.39E+5 7.37E+5 7.48E-8 9.93E-25 3.23E+4 0 
𝑓4 MEAN 1.08E+5 3.97E+5 3.52E+4 4.43E+4 7.20E+5 3.37E-4 

STD 3.56E+5 9.46E+4 7.40E+3 9.26E+3 8.57E+4 7.29E-6 
𝑓5 MEAN 1.08E+5 3.93E+5 3.92E-14 4.13E-18 6.43E-10 0 

STD 3.56E+5 9.46E+4 3.51E-15 6.61E-18 8.97E-11 0 
𝑓6 MEAN 5.23E+7 9.38E+4 3.13E-12 4.82E-15 7.32E-10 0 

STD 3.12E+7 9.46E+4 3.87E-15 9.35E-17 7.20E-10 0 
𝑓7 MEAN 3.09E+5 1.29E+5 8.74E+1 0 2.46E+4 0 

STD 1.23E+5 3.54E+5 6.43E+1 0 4.74E+3 0 
𝑓8 MEAN 6.79E+8 2.37E+9 3.55E+1 4.34E-17 5.08E+1 2.45E-15 

STD 4.32E+8 9.87E+7 1.44E+1 3.65E-18 5.96E+1 6.04E-16 
𝑓9 MEAN 2.21E+4 6.34E+3 4.21E-7 0 6.33E+2 0 

STD 4.75E+4 6.53E+3 8.76E-6 0 5.28E+2 0 
𝑓10 MEAN 3.96E+6 4.79E+6 4.73E-3 5.91E-4 4.56E+2 6.17E-10 

STD 6.52E+6 3.31E+6 4.34E-3 2.01E-5 7.15E+2 4.55E-10 
𝑓11 MEAN 6.53E+5 6.76E+5 4.83E-3 6.98E-2 7.24E+2 7.24E-10 

STD 4.32E+5 1.39E+5 8.26E-3 6.56E-3 7.62E+2 8.68E-11 
𝑓12 MEAN 6.78E+2 3.06E+2 6.87E-23 7.88E-2 2.99E+4 8.70E-31 

STD 4.96E+2 1.84E+2 4.36E-23 8.46E-3 6.46E+3 1.89E-32 
𝑓13 MEAN 4.67E+5 2.05E+5 4.50E-10 6.26E-12 4.36E-7 0 

STD 2.90E+5 1.63E+5 2.19E-10 2.14E-12 7.42E-8 0 
𝑓14 MEAN 5.59E-4 3.28E-5 2.89E-9 4.73E-10 5.75E-7 0 

STD 2.94E-4 1.95E-5 7.73E-10 2.97E-10 9.58E-8 0 
𝑓15 MEAN 3.31E+8 5.12E+8 5.09E-6 6.29E-3 1.76E+3 0 

STD 1.98E+8 3.28E+8 3.68E-7 4.73E-4 9.35E+2 0 
𝑓16 MEAN 4.54E+4 8.52E+3 3.49E+6 4.10E-34 6.28E+3 4.21E-14 

STD 2.05E+3 5.64E+2 9.86E+6 8.19E-36 3.74E+3 6.49E-15 

 

4.3 Convergence Speed Results on 500 and 1000 Dimensions 

This section presents and discusses the results of the convergence speed of six algorithms on the 16 
benchmark functions for 500 and 1000 dimensions. Fig. 2(a-h) plots the convergence speed of six 
algorithms on Rosenbrock, Sphere, Step, Quartic, Quadric, Elliptic Rastrigin, and Ackley for 500 
dimensions. Fig. 3 (a-h) plots the convergence speed of the algorithms on Griewank, Schwefel 2.4, 
Generalized penalized 1, Generalized penalized 2, Qing, Salomon, Qunitic and Alpine for 500 
Dimensions. Fig. 4 (a-h) plots the convergence speed of the six algorithms on Rosenbrock, Sphere, 
Step, Quartic, Quadric, Elliptic Rastrigin, and Ackley for 1000 dimensions. Fig. 5(a-h) plots the 
convergence speed results of the algorithms on Griewank, Schwefel 2.4, Generalized penalized 1, 
Generalized penalized 2, Qing, Salomon, Qunitic, and Alpine for 1000 dimensions.  

The x-axis represents the fitness evolution value (FEs). The x-axis indicates the convergence speed, 
and the y-axis represents the optimization value produced by each algorithm. On the Rosenbrock 
function, all the algorithms expect PSOLFS fall into the local optimum. PSOLFS converges to the 
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global optimal at about 12763 FEs, as shown in Fig. 2(a). The three algorithms PSO-SA, and LFAPSO 
fall into the local optimum on the Sphere function, as shown in Fig. 2(b). PSOLF and LFPSO obtain 
a result that is closes to the global optimum. However, PSOLFS achieves the global optimum. 

(a)Rosenbrock (e) Quadric 

(b)Sphere                                (f) Elliptic 

(c) Step 
(g)Rastrigin 

(d)Quartic (h) Ackley 

Fig. 2.  Convergence Speed Results on Rosenbrock, Sphere, Step, Quartic, Quadric, Elliptic, Rastrigin and 

Ackley for 500 Dimensionss 
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                          (a) Griewank (e) Qing  

(b) Schwefel2.4 
(f) Salmon 

(c) Generalizedpenalized 1 (g) Qunitic 

(d) Generalizedpenalized 2 (h) Alpine 

Fig. 3. Convergence speed results on Ackley, Griewank, Schwefel2.4, Generalized penalized 1, Generalized 

penalized 2, Qing, Salomon, Qunitic, and Alpine for 500 Dimensions 

On the Step function, the algorithms PSO, PSO-SA, and LFAPSO fall into the local optimum, as 
seen in Fig. 2(c). LFPSO obtains better results than PSO, PSO-SA, LFAPSO. PSOLF reaches a 
solution, which is near to the optimal. PSOLFS reaches the optimum value 0 at 7742. PSOLFS gives 
an optimum value on the Quartic function at 12088, while all other algorithms fall into the local 
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optimum, as shown in Fig. 2(d). PSO gives the worst results on the Quadric function among all the 
algorithms, as depicted in Fig. 2(e). PSOLF shows better results than PSO-SA, LFPSO, LFAPSO. 
PSOLFS converges quickly to the optimal solution at 9175. 

                         (a)Rosenbrock                                (e) Quadric 

(b)Sphere                                  (f) Elliptic 

(c) Step (g) Rastrigin 

                               (d) Quartic (h) Ackley 

Fig. 4. Convergence Speed Results on Rosenbrock, Sphere, Step, Quartic, Quadric, Elliptic, Rastrigin and 

Ackley for 1000 Dimensions 
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(a) Griewank  (e) Qing  

(b) Schwefel2.4 (f) Salmon  

(c) Generalizedpenalized 1 (g) Qunitic 

(d) Generalizedpenalized 2 (h) Alpine 

Fig. 5. Convergence speed results on Ackley, Griewank, Schwefel2.4, Generalized penalized 1, Generalized 

penalized 2, Qing, Salomon, Qunitic, and Alpine for 1000 Dimensions 

The last unimodal function is Elliptic, where PSOLFS obtains the optimal solution in a small number 
of FEs, which is 4023, as illustrated in Fig. 2(f). For the multimodal functions: Rastrigin, Ackley and 
Griewank, the two algorithms PSOLF and PSOLFS converge to a global optimum, as demonstrated in 
Fig. 2(g), Fig. 2(h), and Fig. 3(a), respectively. The graph demonstrates that PSOLFS has faster 
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convergence speed with low numbers of FEs. LFPSO obtains a better accuracy on Griewank than PSO, 
PSO-SA, and LFAPSO. From Fig. 3(b), we can see that PSOLFS gives a global optimum solution at 
about 12000 FEs, while other algorithms fail to give good results on Schwefel 2.4. 

On Generalized penalized 1 and Generalized penalized 2, all the algorithms fail to obtain the global 
optimum, as shown in Fig. 3(c) and Fig. 3(d), respectively. PSOLFS algorithm achieve a result that is 
near to global optimal. For Qing, Salomon, and Quintic benchmark function, PSOLFS algorithm 
converges quickly to the optimal solution, as depicted in Fig. 3 (e), Fig. 3 (f), and Fig. 3 (g), respectively. 
Lastly, on the alpine function, PSOLF converges faster to the optimal solution than PSOLFS as shown 
in Fig. 3(h). The other four algorithms were unable to generate the global optimum. We observe from 
the results reported in Fig. 2 and Fig. 3 that PSOLFS always attempts to jump out of local optima and 
managed to generate the global optimum solution for all functions. It converges quickly to the global 
optimum during the convergence process. 

From Fig. 4(a), On the Rosenbrock function, all the algorithms fall into the local optimum, but only 
PSOLFS gives better results in FEs number 11432. The three algorithms PSO, PSO-SA, LFAPSO 
converge into the local optimum on the Sphere and Step function. PSOLF obtains a close result to the 
global optimum, and PSOLFS achieves the global optimum, as depicted in Fig. 4(b) and Fig. 4(c). 
However, PSOLFS fails to find the global solution on Quartic as shown in Fig. 4(d), POSLFS gives the 
best solution compared with the other algorithms. The convergence speed of Quadric and Elliptic 
demonstrates that PSOLFS gives a global solution in less than 10000 FEs, as shown in Fig. 4(e) and 
Fig. 4(f). We also notice that the PSO and PSO-SA converge quickly into the local optimum, while 
other algorithms converge to a better-quality solution with many FEs. For Rastrigin, PSOLF and 
PSOLFS converge to the global optimum; however, PSOLFS shows a faster convergence speed with 
few FEs, as shown in Fig. 4(g). From the result given in Fig. 4(h), we observe that PSOLFS converges 
quickly to the global solution in less than 4,000 FEs; however, PSOLF outperforms PSOLFS in the 
accuracy solution. The other algorithm cannot converge to the global solution. Fig. 5(a) shows that 
PSOLF and PSOLFS converge to the global optimum on Griewank. 

Fig. 5 (b) depicts that PSOLFS obtains better results in a few numbers of FEs. Fig. 5(c) and Fig. 
5(d) show that the five previous algorithms achieve local optimum results on  Generalized penalized 1 
and Generalized penalized 2, while PSOLFS accomplishes a near-optimal result. Fig. 5(e), Fig. 5(f), and 
Fig. 5(g) prove that PSOLFS converges quickly to the optimal solution. The result presented in Fig. 
5(h) shows that the PSOLF converges faster to the near-optimal solution than PSOLFS, while the other 
four algorithms are stuck in the local optimum. From the results of the experiment accomplished on 
the 1000 dimensions. We conclude that PSOLFS obtains the optimal solution in fewer fitness functions 
than other algorithms. 

4.4 Non-parametric Test Results 

Statistical tests have become essential measurements to evaluate the new algorithm's performance 
compared with other algorithms [65]. One of these tests is the Wilcoxon test. Wilcoxon test is a pairwise 
statistical test that works to find the statistical difference between two algorithms when applied on a set 
of problems [66]. For the Wilcoxon test, we state ten hypotheses describing what the test will 
incorporate. We hypothesize the following. 

H10: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by PSO for all benchmark functions on 500 dimensions after 20 runs. 

H20: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by PSO-SA for all benchmark functions on 500 dimensions after 20 runs. 

H30: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by LFPSO for all benchmark functions on 500 dimensions after 20, which 
is near to the optimal. PSOLFS reaches the optimum value 0 at 7742. 

H40: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by PSOLF for all benchmark functions on 500 dimensions after 20 runs. 
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H50: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy by LFAPSO for all benchmark functions on 500 dimensions after 20 runs. 

H60: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by PSO for all benchmark functions on 1000 dimensions after 20 runs. 

H70: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by PSO-SA for all benchmark functions on 1000 dimensions after 20 
runs. 

H80: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by LFPSO for all benchmark functions on 1000 dimensions after 20 runs. 

H90: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy achieved by PSOLF for all benchmark functions on 1000 dimensions after 20 runs. 

H100: The mean of the convergence accuracy achieved by the PSOLFS is equal to the mean of the 
convergence accuracy by LFAPSO for all benchmark functions on 1000 dimensions after 20 runs. 

Table 4.  The p-value of the Wilcoxon test of the Six Algorithms 

Number of 

Dimensions 

PSOLFS vs 

PSO 

PSOLFS vs 

PSO-SA 

PSOLFS vs 

LFPSO 

PSOLFS vs 

PSOLF 

PSOLF vs 

LFAPSO 
500 3.6749e-07 3.6749e-07 5.1893e-07 5.6836e-05 5.1893e-07 
1000 2.9431e-06 3.6038e-06 1.7231e-04 0.0113 1.1728e-05 

 

Table 4 shows the p-value of the Wilcoxon test for the five algorithms compared with PSOLFS. The 
experiment rejects al hypothesizes at the default significant level s=0.05, which is indicated by the p-
values in Table 4. As seen in Table 4, the p-value is less than 0.05. The null hypothesis test is rejected, 
with a significant difference between PSOLFS and the other PSO variants. The results of hypothesis 
tests show that PSOLFS significantly outperforms the other variants of PSO. 

5. Conclusion 

This paper proposes a particle swarm optimization based on levy flight and fast simulated annealing, 
PSOLFS. PSOLFS attempts to obtain a global solution for a high-dimensional optimization problem. 
We use different sets of benchmark functions for 500 and 1000 dimensions. On 500 dimensions, the 
algorithm obtains the optimal value on 14 of the 16 functions. On 1000 dimensions, the algorithm 
obtains the optimal value on eight benchmark functions and is close to optimal on four functions. We 
also compare PSOLFS with the other five PSO variants in terms of convergence accuracy and speed. 
The results demonstrate that PSOLFS achieves higher accuracy and faster convergence speed than other 
PSO variants. Also, the results of the Wilcoxon test show a significant difference between PSOLFS and 
the other PSO variants. In future work, we are planning to investigate the efficiency of the proposed 
algorithm on different optimization problems, such as nurse scheduling and constrained engineering 
optimization problems 
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